Local adaptation in Trinidadian guppies alters ecosystem processes.
نویسندگان
چکیده
Theory suggests evolutionary change can significantly influence and act in tandem with ecological forces via ecological-evolutionary feedbacks. This theory assumes that significant evolutionary change occurs over ecologically relevant timescales and that phenotypes have differential effects on the environment. Here we test the hypothesis that local adaptation causes ecosystem structure and function to diverge. We demonstrate that populations of Trinidadian guppies (Poecilia reticulata), characterized by differences in phenotypic and population-level traits, differ in their impact on ecosystem properties. We report results from a replicated, common garden mesocosm experiment and show that differences between guppy phenotypes result in the divergence of ecosystem structure (algal, invertebrate, and detrital standing stocks) and function (gross primary productivity, leaf decomposition rates, and nutrient flux). These phenotypic effects are further modified by effects of guppy density. We evaluated the generality of these effects by replicating the experiment using guppies derived from two independent origins of the phenotype. Finally, we tested the ability of multiple guppy traits to explain observed differences in the mesocosms. Our findings demonstrate that evolution can significantly affect both ecosystem structure and function. The ecosystem differences reported here are consistent with patterns observed across natural streams and argue that guppies play a significant role in shaping these ecosystems.
منابع مشابه
Direct and Indirect Ecosystem Effects of Evolutionary Adaptation in the Trinidadian Guppy (<italic>Poecilia reticulata</italic>)
Ecological and evolutionary processes may interact on the same timescale, but we are just beginning to understand how. Several studies have examined the net effects of adaptive evolution on ecosystem properties. However, we do not know whether these effects are confined to direct interactions or whether they propagate further through indirect ecological pathways. Even less well understood is ho...
متن کاملLocal adaptation and the evolution of phenotypic plasticity in Trinidadian guppies (Poecilia reticulata).
Divergent selection pressures across environments can result in phenotypic differentiation that is due to local adaptation, phenotypic plasticity, or both. Trinidadian guppies exhibit local adaptation to the presence or absence of predators, but the degree to which predator-induced plasticity contributes to population differentiation is less clear. We conducted common garden experiments on gupp...
متن کاملExperimental studies of evolution in guppies: a model for understanding the evolutionary consequences of predator removal in natural communities.
Guppies (Poecilia reticulata) in Trinidadian streams are found with a diversity of predators in the lower reaches of streams, but few predators in the headwaters. These differences have caused the adaptive evolution of guppy behaviour, morphology, male colouration and life history. Waterfalls often serve as barriers to the upstream distribution of predators and/or guppies. Such discontinuities ...
متن کاملExperimental evaluation of evolution and coevolution as agents of ecosystem change in Trinidadian streams.
Evolution has been shown to be a critical determinant of ecological processes in some systems, but its importance relative to traditional ecological effects is not well known. In addition, almost nothing is known about the role of coevolution in shaping ecosystem function. Here, we experimentally evaluated the relative effects of species invasion (a traditional ecological effect), evolution and...
متن کاملPopulation size-structure-dependent fitness and ecosystem consequences in Trinidadian guppies.
Decades of theory and recent empirical results have shown that evolutionary, population, community and ecosystem properties are the result of feedbacks between ecological and evolutionary processes. The vast majority of theory and empirical research on these eco-evolutionary feedbacks has focused on interactions among population size and mean traits of populations. However, numbers and mean tra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 107 8 شماره
صفحات -
تاریخ انتشار 2010